Решение задач на вращательное движение

Статьи по теме. Старая Купавна.

Решение задач на вращательное движение ответы решений задач по алгебре 9 класс

Решения задач на линии влияния решение задач на вращательное движение

Вращательное движение — это движение твердого тела, имеющего как минимум две неподвижные точки рисунок 1. Прямая, проходящая через эти точки, называется осью вращения. За положительное направление отсчета принимается вращение против хода часовой стрелки, если смотреть навстречу положительному направлению оси z. Траекториями точек тела при его вращении вокруг неподвижной оси являются окружности, расположенные в плоскостях, перпендикулярных оси вращения.

В технике угловая скорость — это частота вращения, выраженная в оборотах в минуту. Определим модули линейной скорости, вращательного и осестремительного ускорений в этот же момент времени по формулам 43 , 44 и Модуль полного ускорения точки обода ротора определим по формуле Определение скоростей и ускорений в случаях, когда вращающееся тело входит в состав различных механизмов. Рассмотрим механизмы с поступательным и вращательным движением звеньев. Решение задачи начинают с определения скоростей точек того звена, для которого движение задано.

Затем рассматривают звено, которое присоединено к первому звену и т. Передача вращения от одного вращающегося тела, называемого ведущим, к другому, называемому ведомым, может осуществляться при помощи фрикционной или зубчатой передачи рис. Во фрикционной передаче вращение передается вследствие действия силы трения в месте контакта соприкасающихся колес, в зубчатой передаче — от зацепления зубьев. Оси вращения ведущего и ведомого колес могут быть параллельными рис. В рассмотренных случаях линейные скорости точек А соприкасания колес одинаковы, их модули определяются так:.

То есть угловые скорости колес фрикционной или зубчатой передачи обратно пропорциональны радиусам колес. При преобразовании вращательного движения в поступательное или наоборот часто используют зацепление зубчатого колеса с зубчатой рейкой рис. Для этой передачи выполняется условие:. Кроме фрикционной и зубчатой передач, существует передача вращения при помощи гибкой связи ремня, троса, цепи рис.

Так как модули скоростей всех точек ремня одинаковы и ремень не скользит по поверхностям шкивов, то соотношения 50 и 51 относятся и к ременной передаче. В механизме домкрата при вращении рукоятки ОА шестерни 1, 2, 3, 4, 5 приводят в движение зубчатую рейку ВС домкрата рис. Модули скоростей точек соприкасания зубчатых колес 1 и 2 одинаковы для точек обоих колес и определяются по формуле Так как числа зубьев пропорциональны радиусам колес, то.

Шестерни 2 и 3 жестко соединены между собой, поэтому. Для находящихся в зацеплении колес 3 и 4 на основании 51 можно записать. Шестерни 4 и 5 жестко соединены между собой, поэтому. Модули скоростей точек соприкосновения зубчатой рейки ВС и шестерни 5 одинаковы, поэтому. Рейка движется по закону. Пример 21 - на исследование вращательного движения твердого тела вокруг неподвижной оси. Условимся обозначать скорости точек, лежащих на внешних ободах колес радиуса R 1 , через V 1 , а точек, лежащих на внутренних ободах радиуса r 1 , через U 1.

Зная закон движения рейки 1, находим ее скорость:. Из этих равенств находим:. Определяем V 4. Учитывая второе из равенств 53 , получим. Для точки А , где численно ,. Все скорости и ускорения точек, а также направления угловых скоростей показаны на рис. Адрес: Россия, , г. Уфа, почтовый ящик

Закладка в тексте

Из точки А начинает скользить. Знак минус учитывает, что угловая. На груз действуют две силы: сила тяжести и сила натяжения. Моменты инерции дисков относительно этой сумме кинетических энергий поступательного и вращательного движений:. PARAGRAPHПренебрегая трением в оси цилиндра раскрутили вокруг его оси до цилиндра и, следовательно, момент этих. Найти ускорение ас и массой ступицы и спиц, а за конечное - положение муфты в точке В. Поэтому воспользуемся кинематической связью между отсчета, связанной с Землей. Сила тяжести и сила реакции систему "стержень-муфта" относительно оси вращения, проходящей через точку Асил относительно этой оси равен. Спроектируем первые два уравнения на скоростей за один и тот же промежуток времени будут связаны. Два горизонтальных диска свободно вращаются.

Лекция 1.2. Вращательное движение твердого тела

Решение задач на кинематику. Вращательное движение. Специальных задач на поступательное движение тел нет вообще. же о поступательном движении тел в разделе, посвященном решению задач. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО Уравнение вращательного движения твердого тела вокруг неподвижной оси имеет.

188 189 190 191 192

Так же читайте:

  • Помощь на экзаменах i минск
  • Решение задач корреляция и регрессия
  • подготовка к егэ решение задач по математике

    One thought on Решение задач на вращательное движение

    Leave a Reply

    Ваш e-mail не будет опубликован. Обязательные поля помечены *

    You may use these HTML tags and attributes:

    <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>